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I. INTRODUCTION

In recent years several investigators have become
interested in flow separation induced by wall discontinu-
ities and the resultant interaction between the external
flow field and the wake. Such wakes may either be pro-
duced by front or resrward facing walls causing separation
of the front-step or rear-step variety leading mainly to
form drag problems, or they may be of the cavity variety,
where an external stream interacts with the wake flow
mainly through shear stresses in the mixing region. How-
ever, not only drag considerations but also heat transfer
phenomena, especially in the region near flow reattachment
to solid walls, have motivated experimental and theqf
retical studies. Cavity type geometries have been studied
where the vortical motion inside the cavity, driven by the
external flow field through a shear region, is well de-
finea and can be subjected to quantitative analysis.

Most of the previous investigators have presented empir-
ical information and qualitative discussions of the nature
of the flow and heat transfer but have not derived com-
plete analytical models for the velocity field or the heat
transfer in the cavity (14,16,17,18,28,29). The exception
noted has been the work of Korst (1), Golik (3), and

Miles (4) which is also considered and included in the

present study as a particular case of the general analysis.



Generally two simple geometries have found the
attention of the investigators, namely nearly éircular or
rectangular cavities. Each has its particular advantage.
The rectangular model is easier to fabricate and may be
easily changed in size by allowing a movable floor or wall.
This is generally the model used by the workers who are
primarily interested in an experimental investigation as
it allows an easy variation of the geometrical parameters.

On the other hand, the nearly circular cavity with
its sharp, well defined separation and reattachment edges
eliminates secondary vortices that form in the corners
between the walls and the bottom and which tend to com-
plicate the flow picture. Variations of geometrical para-
meters in the experimental investigation is, however,
somewhat more difficult especially if wall heating is to
be accomplished. 1In particular, the predominance of a
vortical flow in the cavity (approaching solid body rota-
tion) and the rather well defined shear flow regions along
the cavity boundaries (attached boundary layer along the
wall and the free Jjet mixing region separating the cavity
from the external flow field) make the nearly circular
cavity most attractive for combined analytical and experi-
mental studies.

It is well known that finite wake velocities do
exist and must necessarily be considered to determine dis-

sipation along the cavity wall and to account for any heat
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transfer to and across the separated flow region. Indeed,
finite wake velocities not only are necessary for explain-
ing heat transfer, but also control the balance between
mechanical energy transferred to, and dissipated within
the cavity; it is the very mechanism which sustains the
velocities.

In an attempt to relate the academic interest in
flows over cavities to practical engineering applications,
two specific uses can be selected as being representative.
(These could be extended to applications of a similar
nature.)

External surface cavities on controlled flight
space vehicles for surface temperature control could be
advantageous for long duration, severe heating flights in
the atmosphere. Such vehicles would be the manned skip-
glide type once considered by one of the space programs.
Ablation cooling, such as is presently used for manned re-
entry flight, would be at a disadvantage for controlled
re-entry due to the great and to some degree uncontrollable
changes in body shape. Aerodynamically the body shape is
of no great importance in present orbital missions as long
as there is no structural failure, for there is no need
for aerodynamic surfaces after re-entry. 1In future more
sophisticated missions, as a return from the moon, the
vehicle might be required to land under fully controlled

flight which would preclude ablating surfaces and will



necessitate some other method of surface cooling.

The results of the present analysis may be com-
pared by the designer for given wall and mass bleed cool-
ing rates for a cavity to the cooling of an equivalent
non-isothermal flat plate and the advantage or dis-
advantage will be apparent for a given mission. No
attempt is made to determine how wall cooling and/or
mass injection might be accomplished in vehicle design,
but the analytical results could be used to determine the
best balance between the two cooling methods to achieve
the most effective design.

Another possible use for surface cavities is the
control of environmental temperature of external sensors,
transducers or other external instrumentation on a high
velocity vehicle flying in the atmosphere. The sensor
could be placed in a protective cavity where the core
region 1s maintained at the desired temperature level, no
matter what the free stream conditions, by using an auto-
matic control system.

The intent of the present thesis was to develop a
useful mathematical model describing the flow field and
heat transfer inside and over a nearly circular cavity
with arbitrary wall temperature distribution and including
effects of mass bleed into the cavity core region at an
arbitrary totali temperature. The model was derived for

steady, incompressible, constant property, turbulent flow



over a two-dimensional cavity. A systems analysis such

as Korst, Golik and iiles used, delineated the individual
parts of the complete flow field. The parts were then
analyzed and interfaced to provide the complete cavity
model. The dissipative aspects of the flow model estab-
lished the velocity field on the basis of a mechanical
energy balance. The general energy equation, with the aid
of the now determined velocity field, was then used to
calculate the convective hest transfer rates and establish

a thermodynamic balance for the cavity.
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IT. ANALYSIS

Irnvestigation of Korst (1), Golik (3), and
Miles (4) have demonstrated the feasibility and usefulness
of studying cavity flow by using a systems analysis where-
by individual mechanisms of dissipation and energy transfer
can be delineeted and analyzed. The present work similarly
uses a systems analysis to investigate the flow and heat
transfer in a nearly circular cavity with internal mass
bleed and a non-isothermal wall. The dissipative model is
examined first and the velocity distributions in the shear
regions are determined. These velocity distributions are
then used in a heat transfer model in determining the
temperature distribution and the accompanying heat transfer
from and across the nearly circulasr cavity.

Each of these two models is divided into two
dependent parts for analysis, the shear region across the
cavity opening and the wake or vortical flow region within
the cavity. The wake velocities not only establish the
heat transfer mechanism within the cavity but also control
a balance between the mechanical energy transferred to the
cavity and that dissipated witnin the cavity. Thus the

shear region is controlled by the wake which it sustains.

A. Dissipative Model

The dissipative model follows the systems method of

analysis used by Korst (1) and Golik (3) in establishing



the wake kinematics or the basis of a mechanicel energy
balance. The analysis was limited to a turbulent boundary
layer at the point of separation at the leading edge of the
cavity, a two-dimensional model, and steady flow. The shear
region is assumed to completely span the cavity opening,
that is the open cavity case as designated in the literature,
references (28) and (3).

Charwat (28) and Maull (29) discuss the case of un-

steady cavity flow and Miles (4) presents some estimates of
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an open cavity in terms of the ratio of cavity wall length
to cavity opening length.

A mechanical energy balance may be made for any
cavity shape but the particularizing of the resultant equa-
tions for a circular cavity will make apparent the advantage
of that geometry. The systems' control surface and the
nomenclature used in the analysis are indicated in figure 1.
The boundaries are the "j" streamline which divides the
fluid in or coming from within the cavity from that of the
free stream, the soiid wall of the cavity, and a closing
cross section at resttachment between the "j" and "d" stream-
lines. The "d" streamline stagnates at the reattachment
point R and separates the fluid leaving the cavity from that
which recirculates within the cavity.

For mass bleeding into the cavity a mass efflux

occurs between the "j" and "d" streamlines and requires from



a conservation of mass that

Gy + /MF“47:(3

Jﬂj
Mechanical energy transferred to the system across the "j"
streamline due to the shezr work of the mixing region must
equal the mechanical energy dissipated in the cavity and the

efflux of kinetic energy due to mass bleed.

It is assumed that the dissipations may be identified and
evaluated as individual terms which do not interact. These
components are the total rates of dissipation in (1) the
Jet mixing region, Epy (2) the recompression zone, Epgp (3)

the cavity wall boundary layer, and (4) the cavity core

EDpy,
region, EDC. Therefore,

R BL

Jeodv :EDM+ED+ED +ED¢
v

To make the model more amenable to analysis a nearly cir-
cular shaped cavity was selected. This is a geometry which
allows a discussion of the essential mechanisms but is
simple enough to give meaning to both the theory and com-

parison with experiment. This choice reduces some of the
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dissipative terms to relatively small values and allows a
meaningful analysis of the remaining terms. A discussion of
the individual terms of the mechanical energy equation

follows.

1. The jJet mixing region--In determining the transfer

of mechanical energy to the wake, it was convenient to define
the net transfer of mechanical energy (reference 1)

Im | Y3

=e=] Gugo -1 | evay - 5,

o Yy
Of course the evaluation of dissipation in the mixing zone
is dependent on the solution of the jet mixing problem. As
the velocity along the edge of the core flow region and the
dissipative region is nearly constant, the shear region can
be reasonably approximated by non-isoenergetic, turbulent
jet mixing between two uniform streams at constant pressure.
A discussion of the analysis of the flow in the shear region
follows. The kinematic results are then used in calculating
the dissipative terms in a mechanical energy balance. The
temperature distributions determined in the shear region
fiow analysis are used later in the thermal energy balance
of the heat transfer model.

Mathematical models for the mixing of two streams

have been reported by several researchers for either the

limiting case of a similarity solution or the more general
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case of a developing shear layer approaching similarity
asymptotically (1-8). Both approaches are essentially
momentum integral methods applied to velocity profiles which
have been obtained as solutions for a highly simplified
linearized equation of motion describing constant pressure
mixing. A more generalized method although originally re-
stricted to laminar mixing has been outlined by Pai (10).

Similarity Profiles As a first approximation a

similarity solution was used by Korst and Golik. The results
were satisfactory and a method was devised to account for the
initial boundary layer in the primary stream using an
"equivalent bleed" concept. The equation for a two-dimen-

sional, constant pressure mixing region,

U Sm_é é_&.
pusk e g = 4PV )

was linearized and solved for arbitrary initial conditions
but special interest was centered on the "restricted case"
of either large downstream distances or vanishing initial
boundary layer thickness, for which the asymptotic error

function profile was obtained (2).
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Gw:¥(ci ,{2& 5 ¢b) , an empirical parameter which

is related to the rate of spreading of the mixing zone.

The restricted solution was obtained from the solu-
tion to the linearized equation with given initial flow
profiles by allowing a "position parameter" to asymptotic-
ally approach zero (8).

The initial boundary layer may then be tsken into
account by introducing a virtual origin for the mixing region
at a point upstream of the actual beginning of the mixing
zone, while still utilizing the similarity solution as valild
for large distances downstream. This is a good approximation
as any initial velocity disturbance, such as a boundary layer,
loses its effect on the shape of the flow profiles far down-
stream yet retains the momentum defect. Kirk (5) has sug-
gesteg that the virtual origin be thirty initial momentum
thicknesses upstream from the point of separation. McDonald
(6) and Nash (7) found this value to produce reasonable
results. Of course, near the separation point the use of
the similarity velocity profile would tend to give erroneous

results for most practical conditions.

Developing Profiles Methods of predicting the

pre-asymptotic mixing region have been reported by Nash (7)
and Lamb (8). These methods examine the linearized solution

before the position parameter approaches zero, as it would
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for large distances or zero initial boundary layer thick-
nesses. Lamb applied the Navier-Stokes equations along the
dividing streamline to evaluate the position parameter.

Once the value of the position parameter is known the local
velocity profile can be identified through the pre-asymptotic
solution of the linearized mixing layer equation.

In the present case, temperature profiles in the
mixing region and the effects of initial temperature bound-
ary layers are important in the complete cavity analysis.
None of the above mentioned methods seemed directly applic-
able as no account was made of initial temperature profiles
nor had any provision been made for finite velocities in
the wake. Consequently a more general result had to be
obtained by numerically solving the fundamental equations
governing constant pressure mixing. This method may be
considered more exact and informative than the approximate
explicit solutions but certainly not as convenient in use.
An advantage of the more general solution is that initial
conditions (velocity and temperature profiles) may be studied
directly whereas they had to be treated in lumped parameter
form in the linearized solutions.

The solutions to the linearized equation also re-
gquired a numerical evaluation and it is not clear that a
numerical evaluation of the exact solution of the linearized
differential equations involves less computational time than

the numerical solution to the non-linesr differential equation.
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It is then the purpose here to establish a numerical
method for the solution of the system of non-linear, partial
differential equations (continuity, momentum, and energy
equations) for a shear flow when the initial conditions for
both streams are given. This solution should be useful in
calculating the waké due to separation of any sharp trailing
edged body but in the present work it is to be used in the
dissipative and heet transfer models.

If the governing equations for an isobaric shear

region are written 1in terms of a stream function they appear

as,
momentum,
du d 2 ou
s R
energy,
: 3T 2o dUNE
%?(%T): §$<?PU-§‘>+f“”€t( 3)
where by definition,
_ o _ _ 2%
PUT Ty 2 P R T

The continuity equation is automatically satisfied by
introduction of the stream function as an independent
variable.

If it is now assumed that

&
Pr = E."’__LE_ = CONSTANT
+ +
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Cp = CONSTANT

€r = €(X) onLy

and non-dimensional variables are defined as

- uh - X c- € 5= £
Pl PSR T Py
- T =y Eg=u“g°
T—Ta>w P&ukg) a U

where subscript "a" signifies free stream and "o" is the

origin of the mixing zone then

ST B 2 (preily, e 2 (99
28 Re P, OV 3 I-cy P\ oW
For the incompressible case Ca2 = 0. If the perfect gas

law applies and since the pressure is constant, the equa-

tion of state may be written,

5 -
F o F
The equations are of the parabolic type and the boundary

conditions are specified on the open boundary as:

(1) @ & =0 9= (¥), T =T.(P)
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It can be noted that the energy equation is always coupled
with the momentum equation, while the latter becomes inde-
pendent from the former if density changes can be neglected
(and the turbulent eddy viscosity remains unaffected by
non-uniform thermal conditions).

t‘r\ nnnnnnnnnn W

rngseg are paracce YPEe egu

QO

+ ?
conditions are uniquely determined from known initial condi-
tions. Values of ¢ and T then may be calculated in the
positive x direction using a forward difference approxima-
tion. After the difference equations have been developed,
we shall establish a stability criterion between the grid
size and the parameters of the problem.

A uniform rectangular grid spacing was used as shown
in the below sketch.

| S

M,M—I mu,mn M42 Nyt

. LFL 0
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The dependent variables are calculated for the node points

and are subscripted by the appropriate designation as shown.
To obtain a difference approximation for a first

order derivative in % Taylor series expansion may be written

for ¢ st the Mt1 node in terms of its derivatives. Note

that the derivation of the difference equations will be in

terms of velocity but are similar for temperature in the

energy equation.

B} 29 2 %
q)m’f')” B CPM)V‘ " A% a%‘m,n N AZT% oE* m, n
3 3
L A 5 iﬁ: + higher order
3l 0%, , terms

Solving for the first order derivative and making AE; as

arbitrarily small, the maximum size of AE will be deter-

@mu)n - cpm,n
e |, = 0 g

2

mined by stability criterion later.
oF
)

provided that all higher order derivatives exist. The error

in the approximetion is of the order,

§é - 2| B%L m,n

The same equation for the first order derivative is used for

the Y independent variable,
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Wm,h-\-l - WM,V\
m,n AZF

with an error estimate of

— L AW W
We = 0 032 lmn
If
- o
W= P9 a—;%
then we may write
_z 9|
éi\/_ - P n+ <pm,r\+| d M,y N+l
3V 'm,n Ay
-2 of
_ }Om,n ‘pm,n ?—,M.h
2%

if we now substitute for 9¢/syp a difference equation and
set

A 2
— )Or'ﬂ,n+l ch,n-H + Pmm Cpm,n

Pz‘@ N+l 2

we obtain

aW _ pchm)vu-‘ @M,VH»I . qu)m,y\ cpm.t'\-l
3% Imon (A BT (a%)*

(Flch,n-H + P% mmyq)mm
(ap)*

On substitution into the momentum egquation and solving for

the downstream velocity term,
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M

where the factor M is defined,

(a9)* Ke
AE £(8)

M =

Similarly the difference equation for T is,

— —

2 o~ — .2 —_

P %, n lmm + P Fmynet Im, ne

E

_rY—V\+l, v\ =

(e - F’L@m)n_ﬂ - PLQM,n) Tm,n

E
where E is defined
(A ) Re. R
E = fé‘ r-t :Pr_tM
a g g(8)

With known values, initial conditions, or computed
values of @.,, and T ;,, the downstream nodes may be
calculated for given values of Reg and Pry and a known
function for turbulent eddy viscosity.

Below is a sketch indicating the procedure of cal-
culating a node from three upstream nodes using the above

difference equations.
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M, N+l -\: M4, N4l
mn .. m+l,n
m,n-l /: m+t, h=i

Note that for this method there is no way to calculate the
outside nodes of the new column. Although the field goes

to infinity in both the positive and negative %  direc-
tions, the disturbance due to the initial difference at the
origin is only effective to the edges of the shear region.
Outside this region the original free stream velocities
exist. At the origin, the location of the initial_condi-
tions, the disturbance edges are the boundary layer thick-
nesses of the two streams. As long as the field is defined
outside the shear region far enough to permit the next set
of nodal values to be calculated, the complete field is
defined. A new set of ﬂj values must be inspected after
every step in the E direction and the number of nodes in-
creased if needed as the edges of the shear region spread.
In the present analysis the outside three nodes were kept

at the respective free stream values on both sides of the
shear region. When the inner one of the three nodes changed
by a specified tolerance, a new node was added to that side.
This also allowed the outer nodal values of the new column
to be set equal to the previous outer nodal values as no
change could have been felt at that position. Figures 6 and

7 are an illustration of the numerical results. Note that
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as the solution progressed downstream, the velocity field
spread and the required additional nodes were added.

Under certain conditions the solution of partial
differential equations by finite difference approximations
is stable and any small error (such as round-off error or
small errors in the initial conditions) at some point in the
calculation become smaller as the numerical procedure ad-
vances downstream. When instability exists these small
errors grow and cause completely unreasonable results (from
a physical point of view). A stability criterion will now
be established using Karplus' electric analogue method (12).
The resulting criterion will then be examined from a phys-

ical examination of the problem.

Following the Karplus Method, we arrange the dif-

ference equation as,

&<¢m,n+t B CPm,ﬂ + b <¢m,n-| - CF”‘"‘\)

+ C<¢m+|)n— ¢M,V\> + d (¢m-l,ﬂ - ¢M,h\ = 0
where the coefficient a is a positive value.

One of two conditions must be met to insure stability:
(1) Either all coefficients must be positive
or
(2) 1If one of the coefficients is negative, the sum

of all the coefficients must be negative.
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On arranging the equation for ¢ 1in the Karplus form,
qu)m,nﬂ (cpm)nﬂ - d)mm) + /DL‘P’m,n (95».\’,-: - Cbm,n)

- M (‘P»«-u,n = ¢M,h3 -0

as
_ .2
a=° ?m)n+|
bszch,n
= - M
d = o

and because C is negative (all the terms forming M are
positive) the second condition must be met as there is one

negative coefficient.

On adding the coefficient and applying the condition of

stability

—

z - < ©

Pz¢mm T Fz‘cpm,n-v-l M
If we examine the difference equation, we note that the
coefficient of the last terms must be positive to exert a
positive influence on the downstream velocity. This is the
same condition as above.

Examination of ¢ and 5 from a physical con-

sideration of the problem shows that the maximum values are,

Prraxy = |

Pmax = !
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therefore from the above equation
M>Z

or
=~ \Z
(AZP) Eeeg
2 € nax

Ag <

For the energy equation a similar result was obtained with a
in place of M of the momentum equation. The stability cri-

terion then was

A& < (“T)zzfis Fry
which is a more stringent requirement for Pry less than one.
in the present work, however, Pr; was assumed equal to one.

Step size in the P direction was set by a trial
and error procedure. That is a Aip size was selected and
the result then compared with a previous calculation for a
different size. Note that in the present method it is not
necessary to assume the lateral component of velocity, v, as
negligibly small. In fact it may be calculated from the
continuity equation and the definition of the stream func-
tion once ¢ and p are known.

To proceed in the calculation, a form for the empir-
ical eddy viscosity ratio and a value for the initial eddy
viscosity must be determined. From Prandtl's mixing length
theory the eddy viscosity is assumed constant over the width

of the mixing region and therefore independent of the y
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direction (24%). 1In the present work, as a first approxima- ‘
tion, a linear relation in x (only) was used for the vis-
cosity ratio although it was realized that the eddy viscosity
varies across the shear layer in the pre-asymptotic region.

Perhaps the more complex forms offered by either Nash (7) or

Lamb (8) could be used and compared with the results obtained

in this study. The immediate objective here was to obtain \
a reasonable yet simple model for use in the cavity analysis |
and not to explore all the detailed points of two-stream

mixing.

The linear relation was selected as

€ = a+ bx

where |
= Y &
e:eg:t—e'tg

(>}

with the conditions

| _-30n$
2) @ X = (hen) (ns2) 7

(ONT
I
0

The latter condition introduces a virtual origin which was
defined by Kirk (9) for turbulent free shear layers. He

postulated that

Kyivtual = 2©°€

By using the definition of momentum thickness and a.n power
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law profile for the boundary layer (24),

e _ n
Y (n+1)Y(n+2)

we may determine the above form of Xyirtual®

Consequently the following form for eddy viscosity

ratio was obtained

(n+1Y{ n+2)
g

€ = 30 N

From velocity measurements made in the shear region
of the cavity model it was estimated that the initial value

for the empirical parameter would be of the order”

é Fe - _\f_ Res = OO0
=

The difference equations were programmed in Fortran II
for the University of Illinois IBM 7094 digital computer.
This was done in subroutine form so that the program could
subsequently be used as part of a complete cavity flow and
heat transfer analysis. Provisions were made to accept any
initial velocity and temperature profile in a physical coor-
dinate system and convert in the program to the § , P
coordinates. Profiles could be printed, or read into the

main program at any cross section in terms of an intrinsic

*Using the virtual origin equation of Kirk and data
presented in "Basic Research Investigation of Flow Mechanisms
and Heat Transfer in Separated Flows," Semi-Annual Status
Report SR-13 for NASA NsG 13-59, December 20, 1966, a check
could be made on this estimate. It was found that the value
at x = 0 and the lineer form adopted here were in good agree-
ment with results obtained from hot wire measurements in the
shear zone.
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eoordinate system. These profiles were converted to the
physical system of coordinates by making a momentum and
continuity balance at the desired cross section. 1In the
present case of the cavity, this was done at the reattachment
location so that the "j" and "d" streamlines could be located.

In Figure 5, 95, the velocity along the streamline
emanating from the origin, is compared for the present anal-
ysis with a zero boundary layer thickness at the origin to
the corresponding one for the fully developed profiles of
reference 2. The two methods agree quite well showing only
a maximum of a 3 per cent difference in the range calculated.
This indicates that the difference equations at least cal-
culate a velocity field in the fully developed region that
matches an accepted asymptotic solution.

The net mechanical energy transfer in the shear

region may now be calculated from

where

- “ L LLPF) dd
I, (w)= LO S o (99

This integral was evaluated numerically using the velocity
distribution at the point of reattachment from the jet mix-

ing analysis.
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2. The Recompression Zone--Energy dissipation in re-

attachment regions has not been studied in great detail for
free turbulent shear mixing. It appeers that the sharp edge
at reattachment of a circular cavity reduces the dissipation

of reattachment to a negligible value (1).

3. The Cavity Wall Boundary Layer--Energy dissipation

along the cavity wall was calculated by considering the wall
as a flat plate subject to an "external" incompressible shear
flow. The initial velocity profile was assumed to be that
part of the mixing velocity profile at reattachment which
was below the "d" streamline. Dissipation is determined by
assuming that the external sheer flow retains its profile
outside of the boundary layer and that the wall velocity dis-
tribution follows a n-power law profile (1).

Application of the momentum integral method along the

cavity wall resulted in an ordinary differential equation.

d<:§:n)[q); n+Z'L - P % ““—{

n -z -c

- o022s () (2 ) (Re, )™ o (7))

m

This was solved numerically using the numerically calculated

mixing velocity prbfile at reattachment with the initial
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conditions,

@f—mzo)ﬁmzo)c{)g:d)(nd\

and ylelding the dissipation in the wall boundary layer as,

— D :
E. = B = I, () - T, ()

where the integrals, Ih’ are as previously defined.

4., The Cavity Core Region--The dissipation in the core

region was set equal to zero as the cavity shape considered
leads to a core flow pattern resembling a solid body rota-
tion. The mass which was bled into the cavity was assumed
to enter with zero velocity at the center of the core region.
As the velocity at the center of the core of a solid rotat-
ing body 1s also zero, there is no relative velocity and
therefore no mechanical energy dissipation to be considered
due to the mass bleed.

The energy balance has now been reduced to two terms.
In short, the net mechanical energy transferred by the mix-
ing process is equal to the energy dissipation along the

cavity wall.
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The unknown wake velocity, @b , the peak velocity
at the cavity wall at the separation point, serves as the
cavity reference velocity. It is considered as the local
peak velocity in secondary stream of the two-stream analysis
and is also representative of the dissipation along the wall.
This reference velocity thus characterizes the velocity field
throughout the wake region and represents the secondary
stream velocity in the jJjet mixing analysis. It was used as
the independent variable in satisfying the mechanical energy
balance. Figure 8 is an example of the results of the match-
ing techngiue whereby ¢, 1is assumed and the two mechanical
energy terms are calculated.

The calculation procedure for the balance was
achieved as follows for a given cavity geometry and free
stream conditions:

(1) assume a value for ¢,
(2) calculate the mixing solution by using for initial
conditions,

a. the free stream velocity profile at the point
of separation. This may be a calculated or an
experimentally measured profile.

b. an n-power law velocity profile representation
for the secondary stream based on ¢ and 2,

at the point of confluence.
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c. a secondary stream temperature profile at the
point of confluence (described in the subp-
section on cavity wall heat transfer).

(3) calculate the dissipation along the cavity wall as
that of a boundary layer in a shear flow on a flat
plate, EDBL' The initial shear velocity profile
is the terminal velocity profile of the mixing
solution at the point of reattachment.

(&) calculate net energy transferred, Ep.

(5) compare ET_and EDBL' If the energies are not
balanced, change the secondary initial velocity
and temperature profiles based on the new &b.
Return to the first step in the procedure and
continue until a balance is achieved. Figure 8
is a graphical example of the numerical iteration

performed by the digital computer.

After the balance has been achieved, complete informa-
tion is available on the velocity field of the cavity. These
results are then used in a thermodynamic balance to calculate
the convective energy transfers.

In Figure 3, the cavity reference velocity, ¢, , is
shown as a function of the ratio of cavity wall length to
mixing length with data due to Golik. The curve was cal-
culated with the present analysis using a calculated and
experimentally compared n-power law initial velocity profile

of the primary stream based on the cavity leading plate
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length reported by Golik (see Figure 10). The data show

general agreement in the trend and give credulence to the

present method of analysis. There cannot be a complete com-

parison as Golik did not specifically report the initial
boundary layer thickness for his circular cavity. A bound-
ary layer trip was used by him to insure a turbulent bound-
ary layer. Therefore, it 1s reasonable to expect that his
experimental boundary layer thickness would be larger than
that calculated from an n-power law. As shown in refer-
ence 1 for the similarity analysis, qﬁ: decreasses with
increasing initial boundary layer thickness. This would
seem to indicate the reason for the genersl shift in the

data as compared to the analysis.

B. Heat Transfer Model

As was the case for the dissipative model, there is
no published comprehensive analysis of heat transfer in a
cavity with mass bleed and non-isothermal walls. Korst (1)
and Miles (4) have developed a simplified analytical model
for heat transfer to and across cavities on the basis of
finite wake velocities resulting from the dissipative flow
model developed by Golik (3). A summary of some of the

experimental work published (14-18) is given below followed

by a presentation of the heat transfer model using a systems

analysis similar to the method used for the dissipative

model.
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Larson (14) conducted an experimental program with
an axisymmetric model. In the laminar regime the results
apparently agreed well with the laminar mixing layer anal-
ysis of Chapman (15). However, he found large disagreement
with Chapman's predictions for the turbulent regime. This
was evidently due to the assumption that the\cavity bulk
temperature was equal to the wall temperature. The bulk
temperature was measured for the turbulent case and found
in fact not to be equal to the wall temperature. The aver-
age measured heat transfer coefficients were proportional
to the length Reynolds number raised to the -0.5 power for
laminar flow and the -0.4 power for turbulent flow.

Charwat (16) reported local heat transfer for rec-
tangular cavities. These experiments tended to confirm
Larson's results with respect to the Reynolds number. The
report described the complex multiple vortices of a rec-
tangular cavity. Also it was noted, by experiment, that
the initial boundary layer temperature history does bear
some influence on the heat transfer in the cavity.

Fox (17) made experimental measurements for rec-

tangular cavities with length ratios, e/h ranging from 3

to 1%.
TAT 777
h
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He found that the heat transfer coefficients were propor-
tional to the length Reynolds raised to the -0.2 power for
turbulent boundary layers. Seban (18) using the same facili-
ties as Fox reported measurements for the rectangular cavity
with length ratios over the range of 2 to 5.

S. M. Bogdonoff (11) at Princeton University's Gas
Dynamics Laboratory has conducted tests in the hypersonic
regime with laminar flow over axisymmetric cavities with
mass bleed used for cooling. The article contained no anal-
ysis or complete data but claimed that the heat transfer
rate to the body could be reduced to zero with the proper
amount of bleed (depending on the cavity shape). Work was
done investigating the influence of the reattachment shoulder
geometry not only on the cavity heat transfer but also on that
heat transfer occurring on the surface downstresm of the
cavity.

Miles in his analysis (4) assumes that the heat trans-
ferred from the constant temperature cavity wall into the
thermal boundary layer is released as a line source at the
point of confluence (separation point of the external stream,
S in figure 4), the point of origin of the jet mixing. To
make the point of the source coincide with the origin of the
jet mixing it was necessary to assume zZero initial boundary
layer thickness in the primary and secondary streams of the
mixing process. Mass bleed into the cavity was not con-

sidered.
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Energy of the line source was considered diffused
in the mixing region and the temperature profile due to the
source was obtained from a solution of the energy equation
which assumed similar solutions. The temperature profile
thus obtained was superposed to the temperature profile
established by jet mixing to obtain the total temperature
profile. The local wall heat transfer was determined from
Reynolds analogy for a flat plate using the velocity pro-
files from Golik's dissipative model. Total heat transfer
was calculated from a numerical integration of the local
heat flux (1).

The present analysis was made for non-isothermal
cavity walls with mass bleed in the cavity core region. The
dissipative model described in the previous section was used
to establish the finite wake velocity profiles. By using
the numerical solution to the Jjet mixing region it is now
possible to account for finite boundary layers in either
stream at the point of separation. It is also not necessary
to assume a similar solution for the temperature profiles
in the sheer zone as temperatures were also calculated
through the mixing region in the numerical solution.

A systems energy balance was made for the cavity
using the same assumptions of flow conditions and geometry
that were used for the dissipative model. The system bound-
aries for the heat transfer model are shown in figure 4 with

the individual terms identified. These boundaries are the
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same as those of the dissipative model. All heat added to
the system was considered positive as is the usual thermo-
dynamic convention.
The energy balance yields an equation of the form,
3
Quw + @4 + Qp + Cp TosGs = Wy, + TeCp P dy
Jd
The energy components are:

(1) Qy»> the heat transfer from the cavity wall irto
the wall thermal boundary layer.

(2) Qg, the heat diffused to the free stream (outside
of streamline "j") from the total Qw released at
the point of confluence due to the wall boundary
layer.

(3) Qpy the heat transferred across the streamline "j"
in the mixing region.

) CpTosGs’ the energy added to the system due to mass
bleed at a temperature T,q.

(5) W

m» the shear work transferred across the streamline
"j" in the mixing region.
(6) The energy leaving between the "j" and "d" stream-

lines due to mass addition.

The energy terms in the mixing region may be written in

terms of temperature as,
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also noting that the integral may be rewritten,

5 9 43
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and that on the basis of conservation of mass,

93
G, = g pudg

S
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one then may solve for the wall heat transfer term and

obtain,
>
Qw:\jCPF“tﬁ'tm>d3 ~CPGSQE5—7LJ
Yd

which may be normalized as,

5\(\/ = Qw = gojp_ cp(/\"‘)dla_)—a <T_0§ —-I)
F“— Uo Cp Qm Toa Pa. s oo
8a
where w=Yy/$, is the transverse dimension in the

mixing region normalized by the initial boundary layer
thickness of the primary or free stream. This is compat-
ible with the variable defined in the two-stream numerical

solution.



36
The equation is now in a form similar to the mechan-
ical energy equation. That is the wall heat transfer
(mechanical energy wall dissipation) is equal to the net
heat transferred from the cavity (net mechanical energy
transferred) minus the efflux of energy due to mass bleed
(efflux of mechanical energy). Each term will be analytic-

ally determined in the following.

1. Wall Heat Transfer--In considering the wall heat

transfer, it is apparent that the initial conditions at the
point of reattachment of the Jet mixing region are non-
uniform in both velocity and temperature. This situation
is due to the fact that these velocity and temperature pro-
files are identical with the lower (i€, y < y4 ) portion of
the mixing profiles at reattachment, which is the beginning
of the cavity wall flow regime. The velocity profile was
taken into account in determining the wall mechanical energy
dissipation and was also used in a similar manner in deter-
mining the wall heat transfer. The wall heat transfer with
an arbitrary temperature distribution was assumed similar to
heat transfer from a flat plate with the same temperature
distribution.

A survey was made of work published on flat plate
heat transfer to an incompressible boundary layer but the
case of interest here was not reported. It was felt that

as a first approximation a reliable method of calculating
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heat transfer from a non-isothermal plate would be selected
from the literature and that this method would be modified
to account for the non-uniform initial conditions in a
manner similar to the wall dissipation. The resultant equa-
tion, of course, would be subject to experimental verifica-
tion.

There are several general survey articles on flat
plate heat transfer of which Nickerson (19) and Kisten (20)
are examples. The general boundary layer eqguations were
developed and a discussion of several methods of solution
and their limitations were made including a presentstion
of equations for variable wall temperature.

Spalding (21) presents an exact solution of the
partial differential equations for the case of a step dis-
continuity in wall temperature. The solution depends on
his unique single formula for the law of the wall (22).

It is a complex solution when compared to the semi-empirical
results of other investigators and not easy to use in a
superposition technique to determine local wall flux for
non-uniform wall temperatures.

Hartnett et all (23) survey the methods specific-
ally derived for non-uniform temperatures and conclude that
the analyses are difficult to apply for completely arbi-
trary wall temperature distribution. The authors simplify
the resultant equations and present an approximate form

that may be readily used on engineering problems. Several
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examples were worked out.

Reynolds (13) at about the same time as Hartnett
published his thesis on a semi-empirical method of treating
non-uniform wall temperatures. The method is easy to use,
his description is complete, and an experiment was designed
and performed verifying his results. These equations for
local heat flux were modified and used to calculate local
and total heat flux from the cavity wall for non-isothermal

walls. Following is a brief description of the analysis:
The investigation was done in three parts:

(1) flat plate with constant temperatures
An approximation of the von Karman analogy with
the Schultz-Grunow friction formula for use in
the local Reynolds Number range of 105 to lO7
was selected after a review of the constant

temperature case.
-/ Y
‘I/S TW s s
= 0.029 —
St_ = 0.0256 Re, (-Db> (Pr)

The temperature ratio is a correction term which
allows the fluid properties to be calculated at

free stream temperature. This correction is only
important if the wall temperature is considerably
different than the free stream temperature. Note

that in the present case the free stream velocity

in the Reynolds number will vary along the length
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of a plate representing the cavity wall due to

the initial shear flow profile.

(2) flat plate with a step temperature change
An approximate solution was obtained for heet

transfer for a step change

<t (x) I C e T

it

1l

I
TN
< | A

T _

where | 1is the location of the step from the
leading edge of the plate. This was compared to
solutions available in the litersture and found
reasonable. It also agreed well with dsta obtained

by Reynolds.

(3) flat plate with variable wall temperature
For the variable temperature case, one may now
superimpose an infinite number of small steps
using the step change result. This resulted in
the following expression

m_K W (5500 4 Ty (B)
J zo

where

_ o
(g = pucest, [1- (%) J

_I/'s

The above integral is not the ordinary Riemann

or area type of integral, but rather a Stieltjes
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integral as the prescribed wall temperature can
have discontinuities so that the derivatives are
undefined at these points.

To enable evaluation of the integral, it may
be expressed in terms of a Riemann integral and

a series which accounts for the finite discon-

tinuities.
X P 4T, (E)
[aEnamsy- | hin G20 as
o (o]
N BT 7
+ ) WA ) T ) = Tu (0 )

where Tw (jn+) - mw ({n”) is the temperature change
across the nth discontinuity located at 4n.

On examining the equation for h (§;x), it is
apparent that for all but the simplest cases the
integral cannot be solved in closed form and that
each case would require its own particular numer-
ical integration to determine the local heat trans-
fer rate. The numerical result would then have to
be integrated again to obtain the total heat trans-
ferred from the cavity wall.

Following Hartnett (23) and others, Reynolds
proposed representing the variable wall tempersture

by a finite number of ramps. The results for a
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general ramp may be obtained from the above
equation.
A general temperature profile for a ramp start-
ing at any location, a, on the plate, is
AT = O N X <a

AT =m(x-a),X>a

then the heat rate is

’ %0 'I/S
%U):puCpﬁﬁm\[D—<%§ ] dg

g=a

transforming the variable by setting
%\
= |- (%)

the following is obtained

S/t
- (%)

g (x) = '9—0 PUCe St‘rme 2” (1-2)" dz

e}

where the integral may be recognized as the
Incomplete Beta Function. This function has
been tabulated for various parametric values of
exponents. The function needed at present 1is
plotted in figure 10 with a table of the values
used for the plot.

Any variable temperature distribution may

be approximated by
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where Arl = location of nth ramp divided by a

reference length

M, = slope of nth ramp normalized with
a reference length and the reference
free stream temperature.

B; = jth step change in temperature

normalized by reference free stream
temperature.

Note that the ramps and steps are only to be effec-~
tive from the points of origin downstream. The

heat rate may be written

N
G ’ lo
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Li = location of the j®® step divided

by a reference length.
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These equations were modified for the non-uniform

conditions existing at the beginning of the cavity wall at

cavity reattachment and integrated over the length of the
cavity wall to obtain the total heat transferred to the

wall thermal boundary layer, ©_.

In the same sense as the dissipation analysis of
the wall boundary layer provided a secondary stream boundary
layer profile forming the initial velocity distribution for
the two-stream mixing analysis, so does now *the heat transfer
calculation provide the initial temperature profile for the
secondary stream. The temperature profile should thus be
calculable along the wall, especially at the end of the wall.
As was pointed out in reference (13), the profile will be
dependent on the wall temperature history i.e., the final
profile will be dependent on how the temperature varies along
the length of the wall.

Reynolds presents no estimate of local temperature
profiles on a flat plate for arbitrary wall temperature and
in a literature search no satisfactory method was found of
predicting the shape of the temperature boundary layer for
this general case. Therefore, as a first approximation, in
the present analysis it was assumed that the Turbulent
Prandtl Number was one and that the temperature boundary
layer obeyed a power law similar to the velocity boundary

layer,

Tw =T _—<(ﬂ)'/ﬂ
Tw-Tg T\ %
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Outside the boundary layer, the initial temperature profile
from the mixing solution was retained.*

Reynolds (13) shows experimentally that for uniform
initial conditions the power law representation is a good
approximation for constant wall temperature and for a finite
number of step changes wall temperature except in the immedi-
ate vicinity of the step. For completely arbitrary wall
temperature, this is a weak approximation. Because of this
limitation data to confirm the analytical results were taken
only for constant wall temperature and step changes.

The equation for local temperature ratio is now

written,
N By
AT(X) _ Tw - Ts _ 2_ «fL'-An>MH . 2-85
Tob TQ‘O n=| m J:'

where 7; is the temperature at the edge of the boundary
layer and now An and Bn must also take into account the
initial variable temperature profile effect at the edge of
the boundary layer when approximating AT (X) by the ramps
and steps. This means that the local temperature profile
must also be known to determine AT (x) . For the limited

cases here, constant temperature and step changes, the above

While apparently reasonable for cases where fric-
tion and thermal boundary layer are of nearly the same thick-
ness, this concept should be re-examined for much more general-
ized cases such as produced by step changes in wall tempera-
ture. Indeed, neglect of this point results in discontinuities
for local heat transfer coefficients near step changes in wall
temperature (e.g., see figures 19, 20, and 21).
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power law was used. DNote that the ramps and steps are
effective only from the starting points and downstream.
The local heat flux was written,
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where mixing length is the reference length in An and Mn
and the average cavity bulk temperature is the reference
temperature in Bj and Mn' One may then define an Average
Stanton Number using an average wall temperature as,

\ ) Qw
Cw B u, ¢ (Tw ~ Tob)

Total wall heat transfer is the integral of the local flux

over the plate length which is written

Lo /&m

dom o [ 80 ()
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Average wall temperature term for the Stanton Number was
defined,
- QW/IM
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ch - JZIN TOLD Tob




46

The second half of the integral is evéluated from the known
initial temperature distribution and the local power law
profile.

On substitution for the local temperature and com-
pletion of the integration, the first part of the integral

may be written

Ew/ﬁm

=

A l WZ BN IZ‘
}_{Z(“B‘M—JZ"“ Me

T
j.w R

As the local velocity at the edge of the boundary layer 4@ ,
is only available numerically, neither term in the equation
for the local flux may be integrated in closed form. There-
fore, the total heat flux was determined by a numerical in-
tegration of the two finite series.

The final equation for the Average Stanton Number

QLV/.QM
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where

This equation was programmed for numerical integra-
tion on the IBM 7094 digital computer for any given wall
temperature distribution, initial conditions from the mixing

solution, and wall length ratio,Qw/QM.

2. Net Heat Transfer in Mixing Region--A major differ-

ence between the present solution and the solution of
Korst (1) and Miles is in the manner the heat transferred
from the cavity wall into the thermal boundary layer is
represented at the confluence point for diffusion into the
mixing zone. A brief review of the later method is given
below followed by an explanation of the present solution.
The earlier study assumed that the temperature
field of the jet mixing region could be superimposed to a
temperature field due to the diffusion of the wall boundary
layer thermo energy at the point of confluence. It was
assumed that the diffused temperature field could be
represented by a similarity profile in addition to the
similarity velocity profiles of the mixing region. There
was, therefore, no direct way to account for initial bound-

ary layer thickness in either the velocity or temperature



solution in the mixing region. Indeed, it was not even
attempted to account for the initial distribution of the
temperature field in a way corresponding to the equivalent
bleed concept for velocity profiles.

To obtain a more generally useful solution of the
mixing region a numerical solution to the momentum and
energy equation was made including the effects of initial
temperature and velocity boundary layers. This has been
described in the previous section. The heat transferred
into the wall boundary layer will be carried into the mix-
ing solution, by a temperature profile at the end of the
wall (beginning of the mixing region) instead of the line
source representation of Miles and Korst. An integral of
the enthalpy distribution at that point should, therefore,
be equivalent to the total heat transferred from the wall.
As was discussed in the section on wall heat transfer, a
method of determining the end temperature profile is, in

general, not available for an arbitrary wall temperature

distribution. This 1limits the reliable range of application

of the solution at the present time to those cases where the

thermo boundary layer temperature profile is calculable.

The integral representing the net heat transfer may

be rewritten in terms of integrals that were defined for the

similarity profiles (1). Of course, these integrals must be

evaluated for the profiles obtained with the present jet

mixing numerical solution.
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The unknown wake bulk temperature TOb serves as the
cavity reference temperature as the wake velocity, 4. ,
did for the dissipative model. It is the secondary stream
temperature outside the sheer region in the two-stream mix-
ing analysis which is also used in the heat transfer anal-
ysis along the cavity wall. This reference temperature thus
characterizes the temperature field of the wake region. It
was used as the independent variable in performing the
thermal ernergy balance.

The calculation procedure for the thermodynamic
balance was made as follows for a given cavity geometry and
free stream conditions:

(1) assume a Tob/Toa value
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(2) calculate the temperature field in the mixing
region and determine the net heat transfer
across the mixing region

(3) calculate the total wall heat transfer

(4) check the balance of the thermal energy equa-
tion for given mass bleed conditions. 1If the
terms do not balance, return to step (1) and

re-assume a new value of T, /Tq,.

After the balance has been accomplished, the temperature

’_l

fie

d for the cavity becomes known as well as the velocity
field, which had been calculated before with the help of

the dissipative model.
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III. EXPERIMENT

A. Experimental Objectives

The theory developed for mass addition at a given
temperature to a circular cavity with an arbitrary wall tem-~
perature distribution should be evaluated experimentally to
determine if the underlying assumptions are reasonable and the
analytical results useful as engineering design information.
The results for the experimental model for the limiting cases
considered provide a basis for evaluating the complete cavity
heat transfer and dissipative model.

Design of the experiment should be versatile enough to
extend the range of the experimental data as more recent in-
formation is added to the theoretical model as well as provide
information useful to the present analysis. It should also be
made flexible enough for use in further studies that might be
suggested by the present work.

The object, therefore, was to design an experiment that
most nearly meets the assumption of the present analysis and

anticipated extensions to the analysis.

B. Experimental Apparatus

1. Model--A circular cavity 7 1/2 inches in diameter with
a 9 15/16 inch opening was fabricated from lucite plastic and
completely encased in fiberglass insulation one inch thick.
The cavity was 14 3/8 inches wide and had lucite leading and

trailing plates. A sketch is shown in figure 10 of the cavity

o
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mounted at the outlet of the free-jet wind tunnel used in
the experiment.

Lucite was used as the construction material because
it is an excellent thermo and electrical insulator. These
characteristics were necessary in order to keep the heat loss
to a minimum and to provide electrical insulation between the
heater strips that were mounted along the cavity wall to simu-
late wall heat transfer. The added fiberglass wrap insured low
thermo losses from the heated cavity wall and from the end walls.

Driver-Harris Company 245 alloy Nichrome, one inch
wide and 0,001 inches thick, ribbon was used to construct the
heaters for the wall heat transfer. The heaters completely
spanned the width of the cavity and the power leads were led
out through the two side walls. The lead opening was calked
to insure no air leakage. Duco cement was used to fasten the
heaters to the wall and gave an excellent smooth bond after an
initial curing period. The cement and the lucite walls lim-
ited the wall temperature less than 200° F.

Thirty-two strips were mounted along the wall with a
1/32 inch spacing between strips. This arrangement was thought
to give a reasonable approximation to any arbitrary tempera-
ture. Each heater was individually manually controlled using
a control shown schematically in figure 12.

Strip temperature was controlled by adjusting the rheo-
stat shown in the schematic and monitoring the temperature on
a read-out device. The adjustments continued from heater 1

through heater 32 until the desired temperatures were reached
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within a tolerance of 1/4° F on the potentiometer. This is
well within the manufacturer's tolerance on the thermocouple
wire. All heaters were powered in a parallel circuit from a
120 volt to 5 volt heavy duty transformer as shown. Average
heater resistance was on the order of 0.55 ohms per foot.

Copper-constantan thermocouples of 30 gage wire were
mounted under the center of each strip to measure and monitor
the strip temperature. Figure 11 shows a sketch of a thermo-
couple mounted in the lucite wall. The wires were extended
two inches along the hester strip to reduce the measurement
error due to heat conduction to a negligible value (30).
Openings 1n the wall were sealed with Duco cement which was
also used to hold the thermocouples in place.

Thermocouples were also mounted in various places in
the wall to measure gradients between strip centers and across
the cavity from one side wall to the other. At the test loca-
tion, the center of the cavity wall, the gradients were within
the tolerance of the thermocouple wire for a five degree dif-
ference in adjacent strip center temperatures.

The leading plate to the cavity had two purposes:
firstly, to establish the flow entering the cavity in a tur-
bulent boundary layer, and secondly, to eliminate the effects
of the nozzle boundary layer of the blower. As shown in
figure 10, the tunnel boundary layer is scooped under the
plate. Boundary layer thickness on the leading plate was 0.31
inches at the cavity entrance. This value was based on a

velocity traverse with a total pressure probe and when plotted
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is a representative turbulent boundary layer.

The trailing plate was used to lead off the flow that
passes over the cavit&. It will be interesting at a later
time to install temperature measuring devices along this plate
to measure the effect of changes in the cavity on heat trans-
fer to the trailing plate.

Both edges of the cavity, at separation and reattach-
ment, were made sharp and blended into the cavity wall. This
was done to make a distinct location of separation and re-
attachment.

Mixing length of 9 15/16 inches corresponds to a
Mixing Reynolds number of 4.8 x 105 and the cavity had a ratio

of cavity wall length to mixing length of 3.35.

2. Eguipment--A low speed free-jet wind tunnel located in
the Mechanical Engineering Laboratory was used in this experi-
ment. A backward curved centrifugal blower with a capacity of
1000 C F M at 7.5 inches of water or 15,500 C F M at atmos-
pheric pressure was discharged through a diffuser into a three
feet by four feet settling chamber. The chamber had two 10x 1k
mesh screens across the chamber at approximately the center
which dampened any upstream disturbances and reduced the tur-
bulence level. Downstream of the settling chamber was a nozzle.
with a 15 x 20 inch exit area discharging into the atmosphere.
The exit velocity was approximately 100 fps, depending on the
atmospheric conditions, and uniform within 0.5 per cent exclud-

ing the 0.3 inch wall boundary layer. Figure 10 indicates the
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relative position of the nozzle and the cavity.

The following measurements were recorded:

Free Stream Velocity with a 0.049 inch diameter total
pressure probe. Readings were made on a 3-inch
Merriam inclined manometer, which could be read to

the nearest 0.01 inch of water. The probe was mounted
approximately ten inches above the cavity opening and
centered with respect to the blowervexhaust nozzle.
Free Stream Temperature with a copper-constantan
thermocouple referenced to an ice bath. The thermo-
couple was mounted on the leading edge of the flat
plate upstream of the cavity.

Bleed Temperature with two copper-constantan thermo-
couples referenced to an ice bath. The thermocouples
were mounted in the couplings just before the air
entering into either side of the cavity.

Bleed Mass Flow Rate with a Fisher and Porter Rota-
meter number J10-1569 with a BSX - 62 - A float and

B - 6A - 25 - A tube. This meter was compared with an
A.S.M.E. standard orifice meter, and the two meters
were found to be within three per cent in the range of
the data.

Cavity Temperature with four copper-constantan thermo-
couples in series referenced to the free stream tem-
perature. The free stream junctions were mounted in

the same location as the thermocouple measuring free
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stream temperature. The four couples were mounted
in the cavity on a radius and at an interval that
would give a meaningful average temperature. It was
assumed that the core flow was solid body rotation
and using this velocity profile the mass flow rate
distribution along the radius of the cavity was deter-
mined. The radius was divided into four equal total
mass segments and thermocouples were mounted at the
mass flow center of each segment.

f. Atmospheric Pressure with a standard barometer mounted
in the Mechanical Engineering Laboratory.

g. Current Flow to the heaters with a Weston meter which
could be read to the nearest 0.05 of an ampere.

h. Heater Temperature with individual copper-constantan

thermocouples to each of 32 heaters.

All temperature measurements were read on a Leeds and
Northrup portable potentiometer which could be read to the
nearest 0,001 of a millivolt. This is the nearest 1/22 of a
degree for copper-constantan thermocouples and much closer
than the thermocouple guaranteed tolerance of 3/4 of a degree.
The millivolt readings were converted to temperature using
Leed and Northrup's 31031 Standard Conversion Tables. All
thermocouples were constructed from 30 gage nylon insulated
wire. The wire was calibrated by the manufacturer, Thermo
Electric Co., Inc., and an accuracy of +3/4° F from 750 F to

200° F was guaranteed.




57

Experimental Procedure

The test was conducted in the following fashion:
Start the wind tunnel and record free stream condi-
tions and barometric pressure.

Adjust the cavity bleed rate to the predetermined
value.

Turn on heater to mass bleed. This was not precisely
controlled at a given temperature but set with a
Variac transformer. Settings were made to cover a
particular range of bleed temperatures.

Turn on power to heater strips and preset hester con-
trols based on past experience for the desired tem-
perature distribution.

Allow approximately 30 minutes to pass and then make
any fine adjustments needed for the bleed rate.
Change each individual heater controls until the
desired temperature distribution is set. This usu-
ally requires on the order of 30 minutes and a great
deal of patience.

Record power to each heater, cavity temperature, and

wall temperature distribution.
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IV. DISCUSSION OF RESULTS

In contrast to earlier investigations which proposed
and attempted to verify individual and supposedly mutually
independent components, as well as their integration into
the over-all cavity flow model, this study has been conducted
in anticipation of strong interactions between flow regions
and different dissipative and convective mechanisms.

In particular, the jet mixing problem had to be
linked together with the initial velocity and temperature
distributions near the point of confluence which required
the study of developing non-similar profiles. The problem
of dealing with the effective eddy viscosity in an analyt-
ical model, although important, has been coped with in a
cursory form only and no direct evidence has been sought or
obtained in the course of this study.

However, the analytical method, as presented, can
yield numerical solutions in a form which do not require
full specification of the viscosity law, and any informa-
tion going beyond such preliminary formulations as proposed
in section II and used for all analytical results could
easily be substituted. This is in spite of the fact that
experimental evidence has meanwhile given some support not
only for the usefulness but also for the reasonableness of
the suggested relation.

Attention is here called to some of the present
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results for the mixing component as compared to those ob-
tained by other methods.

A numerical solution has been developed for the
shear region between two parallel streams at different free
stream velocities. The validity of the method developed
has not been experimentally verified but the results seem
reasonable. Comparison with the asymptotic solution (2) as
shown in figure 5 indicates good agreement with the present
analysis based on the representative "j" streamline velocity.
Both curves are for zero initial boundary layers. This, of
course, does not give credulence to the solution in the
developing region but indicates that the final profile is
reasonable.

Shown in figures 6 and 7 are plots of velocity pro-
files from the initial point of mixing through a length
equivalent to the presently investigated cavity. The pic-
ture shown by the plotsvis what would be expected from a
physical reasoning, that is a smoothing out of the profile
and a spreading of the shear region.

It would seem that the only question is if the
development takes place too rapidly or too slowly. Any
adjustment that might be required in the development length
would not depend on the basic solution but on the repre-
sentation of the empirical eddy viscosity ratio and the
initial value of eddy viscosity. These terms have been

under investigation for a long period by several researchers



A0

(e.g., NASA grant No. NsG 13-59 at the University of
I1linois) and perhaps further investigation of the problem
using the present solution will provide a more indicative
relation for the eddy viscosity. An investigation is being
conducted as a part of the present research effort to extend
and more fully verify the results of the two-stream solution
and to establish an eddy viscosity relation on a firm experi-
mental basis. Although there is some degree of uncertainty,
the resultant mixing model has proved useful in the study of
cavity flow and heat transfer. The analysis could also be
used to calculate wakes of airfoils or any sharp trailing
edge body. 1In addition, the analysis provides a standard
numerical solution against which less rigorous but more
easily used engineering solutions may be compared.

Using the energy balance systems analysis with the
present restricted method of calculating the wall heat trans-
fer provides a reasonable agreement for cavity bulk tempera-
ture in a cavity with constant wall temperature or step
changes. Figure 13 shows a comparison of data for three
mass bleed rates with constant cavity wall temperature.
Also, presented in figure 14 are data for a cavity wall with
two step changes in temperature after the initial change at
the leading edge. The data are in generally good agreement
with the analysis 'and follow the trend of the curves well.
This indicates that the analytical model gives a reasonably

useful tool in the study of flow over and within nearly
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circular cavities.

Reynolds (13) suggested that the local heat transfer
coefficient for a flat plate with constant heat flux is 4.3
per cent grester than for a flat plate with constant wall
temperature. Using this factor the analytical results for
the constant temperature wall were shifted and data for the
constant flux case was then compared with this shifted result
in figure 15. Agreement is fair and the curves are only an
indication as the shifting factor was derived for constant
initial conditions to the plate. A method of calculating
local temperature for constant wall flux similar to the
method for constant wall temperature would, of course be
more reliable.

Local heat transfer coefficients for the cavity wall
are presented in figures 16, 17, and 18 for the isothermal
case. The first plot is normalized with an average heat
transfer coefficient (see nomenclature for definition). For
this plot, the temperature difference for the local and aver-
age coefficient was considered to be the constant wall tem-
perature minus the cavity bulk temperature, Tob' All data
lie together and indicate the same heat transfer pattern
from the wall as the tétal amount of heat transferred was
changed. Only three sets of data were plotted but the other
results fall in the same distribution. Note the uncharacter-
istic rise in heat transter at the separation point due to

the mixing zone.
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It is interesting to note that the average heat
transfer coefficient is nearly proportional to the Length
Reynolds number to the -2/5 power. This is in agreement with
Larson (14) and his axisymmetric model and in disagreement
with Fox (17) and his rectangular model. This is not con-
clusive as data were taken for only one value of Reynolds
Number.

In figure 17, the normalizing factor is the heat
transfer coefficient of a flat plate equivalent to the cavity
wall. This plot then indicates quantitatively the deviation
of the cavity wall heat transfer from that of a flat plate.
The data shifts, retaining the heat transfer pattern, depend-
ing on total heat transferred to the cavity or the cavity
temperature. If the heat transfer were completely like a
flat plate, all data would be on an ordinate value of one.
Note that there is generally a deficiency in total amount of
heat transferred and that for the higher value of Top? there
is a greater deficiency. This is due to the non-uniform
temperature profile at the start of the wall. Note also
that the bleed flow rate does not directly influence the re-
sults except through the bulk temperature. The coefficient
decreases at the trailing edge, or separation edge, which
is not characteristic of a flat plate. This is due to the
effect of the mixing region across the cavity opening which
might be considered a trailing end effect. The sharp in-

crease at the reattachment point is, of course, due to the
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reattachment of the jet on the cavity wall.
A total heat transfer coefficient for an equivalent

flat plate (that is a plate of the same length as the cavity

opening, f,) was used as the normalizing factor in figure 18.

This plot then provides a means of comparison of the hezt
transfer in a cavity with mass bleed to the equivalent total
heat transfer from a flat plate of comparable length.

In figures 19, 20, and 21 local heat transfer co-
efficient data are shown for two interior wall temperature
step changes. These show the same general trends and agree-
ment as for the isothermal wall but also indicate the sharp
temperature changes at the steps and the influence on the
over-all heat transfer pattern when compared to the iso-
thermal data.

Shown in figure 22 are data for a simulation, by a
line source at the confluence point, of the wall heat trans-
fer. The data were taken for this study on a model used by
Miles (4) and modified for introducing mass bleed into the
cavity. The curves indicate that the data are considerably
lower than results predicted by the present analysis for a
constant wall temperature heat transfer with the same total
heat transferred. The second set of curves is for Miles!'
analysis modified to account for mass'bleed. This analysis
was derived as if the heat transferred from the wall acts
as a line source at the point of confluence and the data fit

the analysis rather well.

m e 1
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The finite size and location of the heating element
as compared to the sharp edge of the cavity probably caused
more heat to be transferred from the cavity than for the
case of actual wall heat transfer. Korst has pointed toward
this possibility (1). 1In addition, the plot would seem to
indicate a deficiency in the former analysis, especially in

the wall heat transfer simulation technique.
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V. CONCLUSIONS AND RECOMMENDAT IONS

It has been shown that the numerical calculations
based on the proposed model produce reasonable results for
either the constant wall temperature case or for step changes
in wall temperature. It is expected that the method of anal-
ysis could be extended to higher wall and bleed temperatures
and larger bleed rates which would result in higher bulk
temperatures. The analysis is also applicable to tempera-
tures lower than the free stream.

To be able to extend the results to a more general
case of complete non-uniform wall temperatures, a better
method of predicting the temperature profile along the wall
must be determined. This is necessary in predicting the
local wall heat transfer along a non-isothermal wall and in
determining the initial temperature profile to the two-stream
mixing calculation. A study should be conducted investigat-
ing both experimentally and analytically the temperature
distribution along a non-isothermal flat plate. The results
of this study could then be readily incorporated in the
present analysis and additional data could be obtained with
the present experimental cavity and related equipment.

A further investigation should be made of the empir-
ical eddy viscosity relation for two-stream mixing. This
could be done by making velocity and temperature profile

measurements in a well defined mixing region (without the



66

complicating influence of a cavity) and the results then
used in the cavity analysis by simply changing the present
relationship for eddy viscosity. The cavity wall causes

the secondary stream to merge at an angle with respect to
the primary stream and introduces a further complicating
variable that could be investigated after the more simple
case has been examined. This type of an investigation would
also contribute to a better understanding of eddy viscosity
and turbulent flow in general.

The experimental apparatus as designed and used in
this investigation will allow further data to be taken for
the most general case of a completely arbitrary wall tempera-
ture. Using this equipment an investig;tion might be con-
ducted to determine the effect of a heat source along the
cavity wall on the bulk temperature. This could be done by
using one or more heaters and varying the location along the
wall.

A further investigation might be performed by heat-
ing non-isothermally a variable length leading plate to the
cavity. This would indicate the effect of the temperature
and velocity initial conditions of the primary stream on the

flow over and within a cavity.
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NOMENCLATURE

a/ﬁm

location of ramp
b/T gy,
step change in wall temperature

Crocco Number, u2/2Cp T,

specific heat

energy dissipated in wall boundary layer
energy dissipated in mixing region

energy dissipated in core region

energy dissipated in recompression zone

net transfer of mechanical energy to cavity fluid
local rate of dissipation per unit volume

bleed rate

thermo conductivity

total number of step changes in cavity wall
temperature

Q/Qm
location of steps or cavity lengths
mj%(Tob

slope of ramp temperature changes in cavity wall
temperature

total number of ramps

boundary layer power law coefficient
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heat diffused to free stream
heat transferred across mixing region

heat transferred to boundary layer along cavity
wall

normalized Q, Qw/fm ,Ogua Cp Tog

average heat transfer from cavity wall,

Qu = Qw(gw/ﬁa)
local heat transfer along wall

upper limit of incomplete beta function,
1 - (a/x)%/10

temperature

average temperature

velocity in x direction .

velocity in y direction

volume

shear energy transferred across mixing jet
intrinsic coordinates or cavity wall coordinates
boundary layer thickness

eddy diffusivity

coordinate of similarity mixing profile
stagnation temperature ratio in mixing profile
kinematic viscosity

x/8q

stream function

density

shear stress

similarity parameter for similarity mixing region
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SUBSCRIFTS

efp
h(E ;x) -

69
dimensionless velocity

boundary layer momentum thickness

y/go

free stream conditions
bulk cavity conditions
discriminating streamline
jet boundary streamline
mixing

total conditions (e.g., total temperature) or
origin of mixing region

bleed
isothermal flat plate
wall

boundary layer thickness

incomplete Beta function, figure 9
normalized bleed rate into cavity

Qu/Atota1(Tw ~ Tob) X
0.0296 ¢, R up(Rey % e

1/5

Vs

0.037 cp/%ua Rem'

local heat transfer coefficient with step
temperature changes

see p. 49
see p. 49




I)_',(n)

<1

see p. 25

Turbulent Prandtl Number

Mixing Length Reynolds Number

Local Reynolds Number along cavity wall
Ug 80/17

Average Wall Stanton Number,

(4F)2 Re / AEE

Pri M
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Figure 4.

Cavity Heat Transfer Model
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Figure 21. Local Heat Transfer Coefficient/Equivalent
Mixing Length Flat Plate Coefficient
(Two-step Changes in Wall Temperature)
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